grdspotter¶
Create CVA grid from a gravity or topography grid
Synopsis¶
gmt grdspotter [grdfile] -Erotfile -GCVAgrid -Iincrement -Rregion [ -Aagegrid ] [ -DDIgrid ] [ -LIDgrid ] [ -M ] [ -Nupper_age ] [ -PPAgrid ] [ -QIDinfo ] [ -S ] [ -Tt|ufixed_val ] [ [ -V[level] ] [ -Wn_try ]] [ -Zz_min[/z_max[/z_inc]] ] [ -rreg ] [ --PAR=value ]
Note: No space is allowed between the option flag and the associated arguments.
Description¶
grdspotter reads a grid file with residual bathymetry or gravity and calculates flowlines from each node that exceeds a minimum value using the specified rotations file. These flowlines are then convolved with the volume of the prism represented by each grid node and added up to give a Cumulative Volcano Amplitude grid (CVA).
Required Arguments¶
- grdfile
Data grid to be processed, typically residual bathymetry or free-air anomalies.
- -Erotfile
Rotations can be specified in one of three ways: (1): Give file with rotation parameters. This file must contain one record for each rotation; each record must be of the following format:
lon lat tstart [tstop] angle [ khat a b c d e f g df ]
where tstart and tstop are in Myr and lon lat angle are in degrees. tstart and tstop are the ages of the old and young ends of a stage. If tstop is not present in the record then a total reconstruction rotation is expected and tstop is implicitly set to 0 and should not be specified for any of the records in the file. If a covariance matrix C for the rotation is available it must be specified in a format using the nine optional terms listed in brackets. Here, C = (g/khat)*[ a b d; b c e; d e f ] which shows C made up of three row vectors. If the degrees of freedom (df) in fitting the rotation is 0 or not given it is set to 10000. Blank lines and records whose first column contains # will be ignored. You may append +i to the filename to indicate you wish to invert the rotations. (2): Give the filename composed of two plate IDs separated by a hyphen (e.g., PAC-MBL) and we will instead extract that rotation from the GPlates rotation database. We return an error if the rotation cannot be found. (3): Specify lon/lat/angle, i.e., the longitude, latitude, and opening angle (all in degrees and separated by /) for a single total reconstruction rotation.
- -G
Specify name for output CVA grid file.
- -Ixinc[+e|n][/yinc[+e|n]]
x_inc [and optionally y_inc] is the grid spacing. Geographical (degrees) coordinates: Optionally, append a increment unit. Choose among m to indicate arc minutes or s to indicate arc seconds. If one of the units e, f, k, M, n or u is appended instead, the increment is assumed to be given in meter, foot, km, Mile, nautical mile or US survey foot, respectively, and will be converted to the equivalent degrees longitude at the middle latitude of the region (the conversion depends on PROJ_ELLIPSOID). If y_inc is given but set to 0 it will be reset equal to x_inc; otherwise it will be converted to degrees latitude. All coordinates: If +e is appended then the corresponding max x (east) or y (north) may be slightly adjusted to fit exactly the given increment [by default the increment may be adjusted slightly to fit the given domain]. Finally, instead of giving an increment you may specify the number of nodes desired by appending +n to the supplied integer argument; the increment is then recalculated from the number of nodes, the registration, and the domain. The resulting increment value depends on whether you have selected a gridline-registered or pixel-registered grid; see GMT File Formats for details. Note: If -Rgrdfile is used then the grid spacing and the registration have already been initialized; use -I and -r to override these values.
-Rwest/east/south/north[/zmin/zmax][+r][+uunit]
Specify the region of interest. The region may be specified in one of six ways:
-Rwest/east/south/north[+uunit]. This is the standard way to specify geographic regions when using map projections where meridians and parallels are rectilinear. The coordinates may be specified in decimal degrees or in [±]dd:mm[:ss.xxx][W|E|S|N] format. Optionally, append +uunit to specify a region in projected units (e.g., UTM meters) where west/east/south/north are Cartesian projected coordinates compatible with the chosen projection (-J) and unit is an allowable distance unit; we inversely project to determine the actual rectangular geographic region.
-Rwest/south/east/north+r. This form is useful for map projections that are oblique, making meridians and parallels poor choices for map boundaries. Here, we instead specify the lower left corner and upper right corner geographic coordinates, followed by the modifier +r. This form guarantees a rectangular map even though lines of equal longitude and latitude are not straight lines.
-Rg or -Rd. These forms can be used to quickly specify the global domain (0/360 for -Rg and -180/+180 for -Rd in longitude, with -90/+90 in latitude).
-Rcode1,code2,…[+e|r|Rincs]. This indirectly supplies the region by consulting the DCW (Digital Chart of the World) database and derives the bounding regions for one or more countries given by the codes. Simply append one or more comma-separated countries using the two-character ISO 3166-1 alpha-2 convention. To select a state within a country (if available), append .state, e.g, US.TX for Texas. To specify a whole continent, prepend = to any of the continent codes AF (Africa), AN (Antarctica), AS (Asia), EU (Europe), OC (Oceania), NA (North America), or SA (South America). The following modifiers can be appended:
+r to adjust the region boundaries to be multiples of the steps indicated by inc, xinc/yinc, or winc/einc/sinc/ninc [default is no adjustment]. For example, -RFR+r1 will select the national bounding box of France rounded to nearest integer degree.
+R to extend the region outward by adding the amounts specified by inc, xinc/yinc, or winc/einc/sinc/ninc [default is no extension].
+e to adjust the region boundaries to be multiples of the steps indicated by inc, xinc/yinc, or winc/einc/sinc/ninc, while ensuring that the bounding box extends by at least 0.25 times the increment [default is no adjustment].
-Rjustifylon0/lat0/nx/ny, where justify is a 2-character combination of L|C|R (for left, center, or right) and T|M|B (for top, middle, or bottom) (e.g., BL for lower left). The two character code justify indicates which point on a rectangular region region the lon0/lat0 coordinates refer to and the grid dimensions nx and ny are used with grid spacings given via -I to create the corresponding region. This method can be used when creating grids. For example, -RCM25/25/50/50 specifies a 50x50 grid centered on 25,25.
-Rgridfile. This will copy the domain settings found for the grid in specified file. Note that depending on the nature of the calling module, this mechanism will also set grid spacing and possibly the grid registration (see Grid registration: The -r option).
Optional Arguments¶
- -Aagegrid
Supply a crustal age grid that is co-registered with the input data grid. These ages become the upper ages to use when constructing flowlines [Default extend flowlines back to oldest age found in the rotation file; but see -N].
- -DDIgrid
Use flowlines to determine the maximum CVA encountered along each flowline and create a Data Importance (DI) grid with these values at the originating nodes.
- -LIDgrid
Supply a co-registered grid with seamount chain IDs for each node. This option requires that you also use -Q.
- -M
Do not attempt to keep all flowlines in memory when using -D and/or -P. Should you run out of memory you can use this option to compute flowlines on-the-fly. It will be slower as we no longer can reuse the flowlines calculated for the CVA step. Cannot be used with -W or the multi-slice mode in -Z.
- -Nupper_age
Set the upper age to assign to nodes whose crustal age is unknown (i.e., NaN) [no upper age]. Also see -A.
- -PPAgrid
Use flowlines to determine the flowline age at the CVA maximum for each node and create a Predicted Age (PA) grid with these values at the originating nodes.
- -QIDinfo
Either give (1) a single ID to use or (2) the name of a file with a list of IDs to use [Default uses all IDs]. Each line would be TAG ID [w e s n]. The w/e/s/n zoom box is optional; if specified it means we only trace the flowline if inside this region [Default uses region set by -R]. Requires -L.
- -S
Normalize the resulting CVA grid to percentages of the CVA maximum. This also normalizes the DI grid (if requested).
- -Tt|ufixed_val
Selects ways to adjust ages; repeatable. Choose from -Tt to truncate crustal ages given via the -A option that exceed the upper age set with -N [no truncation], or -Tufixed_val which means that after a node passes the test implied by -Z, we use this fixed_val instead in the calculations. [Default uses individual node values].
- -V[level]
Select verbosity level [w]. (See full description) (See cookbook information).
- -Wn_try
Get n_try bootstrap estimates of the maximum CVA location; the longitude and latitude results are written to stdout [Default is no bootstrapping]. Cannot be used with -M.
- -Zz_min[/z_max[/z_inc]]
Ignore nodes with z-values lower than z_min [0] and optionally larger than z_max [Inf]. Give z_min/z_max/z_inc to make separate CVA grids for each z-slice [Default makes one CVA grid]. Multi-slicing cannot be used with -M.
- -r[g|p] (more …)
Set node registration [gridline].
- -^ or just -
Print a short message about the syntax of the command, then exit (NOTE: on Windows just use -).
- -+ or just +
Print an extensive usage (help) message, including the explanation of any module-specific option (but not the GMT common options), then exit.
- -? or no arguments
Print a complete usage (help) message, including the explanation of all options, then exit.
- --PAR=value
Temporarily override a GMT default setting; repeatable. See gmt.conf for parameters.
Geodetic versus Geocentric Coordinates¶
All spherical rotations are applied to geocentric coordinates. This means that incoming data points and grids are considered to represent geodetic coordinates and must first be converted to geocentric coordinates. Rotations are then applied, and the final reconstructed points are converted back to geodetic coordinates. This default behavior can be bypassed if the ellipsoid setting PROJ_ELLIPSOID is changed to Sphere.
Examples¶
To create a CVA image from the Pacific topography grid Pac_res_topo.nc, using the DC85.txt Euler poles, and only output a grid for the specified domain, run
gmt grdspotter Pac_res_topo.nc -EDC85.txt -GCVA.nc -R190/220/15/25 -I2m -N145 -Tt -V
This file can then be plotted with grdimage.
Notes¶
GMT distributes the EarthByte rotation model Global_EarthByte_230-0Ma_GK07_AREPS.rot. To use an alternate rotation file, create an environmental parameters named GPLATES_ROTATIONS that points to an alternate rotation file.
See Also¶
gmt, grdimage, project, mapproject, backtracker, gmtpmodeler, grdpmodeler, grdrotater, hotspotter, originater
References¶
Wessel, P., 1999, “Hotspotting” tools released, EOS Trans. AGU, 80 (29), p. 319.
Wessel, P., 2008, Hotspotting: Principles and properties of a plate tectonic Hough transform, Geochem. Geophys. Geosyst. 9(Q08004): doi:10.1029/2008GC002058.